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STABILITY OF FLOW OF A VISCOUS INCOblPRESSIBLE FLUID 
ALONG AN ELASTIC WALL* 

M.P. MIASNIKOV 

Stability relative to small long-wave disturbances of the flow of a heavy viscous 
incompressible fluid interacting with a wall coated with a layer of incompressible 
elastic material is considered. 

1. Two stability problems for long-wave type disturbances are studied: (1) plane-parallel 
flow of fluid draining along an inclined plane coated with a layer of elastic material; (2! 
flow of fluid draining along the outer surface of a vertical tube with circular cross-section 
coated with a layer of elastic material. 

The motion of a viscous incompressible fluid is described by the Navier-Stokesequations 

/l/ 

f$ + jVj,k = gk _ + gkj _!& + ,&,k, V,vk = 0 
1 

where vk are the contravariant components of the velocity vector; pi density of fluid; pt prts- 
sure in fluid; Y kinematic viscosity of fluid; and g' contravariant components ZJf the free 
fall acceleration vector. The system of equations of the motion of an elastic material has 
the form /2.3/ 

auk 
F + U’VjUk =gt+-&y V,uk=O 

at. 
+ ?h Ukv#pij + ek,vjuk $- Ekjv(u'= eij 

e+ j = I/* (gkjvfuk + gk,VjUk), p’j = - p*gk’ + 2pgkagj& 

where uk are the contravariant components of the velocity vector of points in +he elastic mat- 
erial; pk' contravariant components of the stress tensor; eaB contravariant components of 
the deformation tensor; pz density of elastic material; p2 pressure in elastic material; and 

p shear modulus. 
The boundary conditions are as follows: 
(1) on the free surface of the fluid, 

dF dF (dF 
F(I,,Z*,t3,f)=O, ~=~‘v z=o 

I 

where-P is atmospheric pressure @>U); 
(2) on the interface between the fluid and the elastic material, 

f(.%st,ss,t)=U, (---8 + 2pivgkagjaeas)$ = (- p,g" + 2~gkagJ~eas)$, u’ == v’ 
7 I 

(3) fixed attachment condition between the elastic material and the solid wall, 

'p (21, Zp, IJ = 0, ui = 0 
All the equations and boundary conditions are described below for physical components of 

the vectors and tensors in a dimensionless form. The physical components of the velocity 
vector pi and U‘ in an arbitrary orthogonal curvilinear system are expressed in terms of the 
contravariant components vi and u' as follows /l/: v,= df/gi,, U, = uit/zf. where gij are the 

contravariant components of the metric tensor. We have /l/ s,, -_ p'jv/g, c';G, s,~ = co0 dp v-g- 
for the physical components of the stress and deformation tensor; here, gin are the contravar- 
iant components of the metric tensor. Inpossinq to dimensionless variables, the charactcrist1r' 
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ware P,‘, vsp are the ccssnporrente of the vefociiy vectur in ths fluid; ~~stt~* are the cm- 
ptxmnh of the Velocity vector in the elastic mazeriirlp pE' mcT $30 pressure in the fluia 
and Sn the elastic material, respli;~Civefy; and h03gW@,s," ax8 the components of the defoma- 
tian tensor in the elastic material. The x-axis of a rectangular Cartesian caordinatesystsm 
has the same &section as the motion of the fluid, while the k, -axis is directed towards the 
free surface of the fluid y -HO, The interface between the fluid and the elastic material 

1v = 43, and the angle of inclinat$on of the pfane to tie horizon is 8, 
To achieve compressed notation, we introduce a correspontience between the numerical and 

Pit~~raL indices: 
;r,y+i XY 

f2 

Terns cm the order of as have beea c>mitted. 
We will find solutions af UN? equations for the fu.nCtfon q~(y} end QS(Y> in the farm of 

expansion in series in pawers of w, obtaining 
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In order to satisfy this equation we require C=C" +W', whence we find 

c"=2v,, c1=-..- f iRr (Ho - h# + -&iR ( Ho - ho)au,,a - 2ixmaqhdK1 (H, - hv) U, 

Suppose the equation of the free surface of the liquid in undisturbed motion has the 
form y=H in dimensional magnitudes, while the interface between the fluid and the elastic 
coating is at Y = h. We set I, = H - h, V, = l/g (H - h), whence F = 1, R w (H - h) l/g (H - h)!v, 
m2 = p,g (H - h)lp. The stability condition imposed on the mainstream flow will have the form 

The elastic coating stabilizes the mainstream flow. In the case of a vertical plane 
(6=n/2) the elastic coating creates a fluid flow stability region, whereas flow is unstable 
in the case of a solid wall. The more elastic the material of the coating the greater the 
stability region. If h=O or p-.+ 00 (no elastic coating), we obtain the stability condition 
given in /5/. 

3. The drainage problem for a heavy viscous incompressible fluid flowing on the outer 
suxface of a vertical tube coated with a layer of elastic material has the steady-state solu- 
ti .on 

5’ (r) = “/a q(rP - ho*) - ‘!aqHo2 (In r - In h,) 
PIO==P, v,“-- - vQa = u,o = urn” = u,o = s**o =: 0 

.s,p (F) = V,G (r - hr-I), s,p (r) = - ‘/$ CP (F - &r-y 
xm2pzo (r) = xm”p + ‘lpG2 f---6? + 2h,* +. 

8h (1 -i_ In r - In h,) - 2he (r-2 + ho+)] 

q = RF-‘, h --= he’ + x (N,’ - h,‘), G x “jz m$F-’ 

Here F,Cp, and z constitutes a cylindrical coordinate system whose z axis coincides with the 
longitudinal axis of the tube: r,~ are polar coordinates in the cross-sectional plane; theout- 
er surface of the solid wall of the tube is r=% the interface between the elastic coating 
and the fluid r=h”, and the free surface of the fluid r-H,. The rest of +he notatian 
has the same meaning as above. To abbreviate the notation, we introduce a correspondence be- 
tween the literal and numerical indices: 

i 

r,cp,z--ti rcpz 
123 1 

To study the stability of steady-state motion relative to small disturbances, we Set /4/ 

vi = vi0 f atQ, ui = uio + au*', Sij =Sij’~ aSij’ 

pt = PP + aPI’, p2 = pzo + ap,’ 

where a<%, and represent the disturbances in the form /4/ 

{Vi'. Ui', pz', pz', Sii'} = (98 (r), @z (r), 94 (r), Co, (r), Yij (d} exp Ii0 fz - et)! 

Setting o<l, we obtain the boundary-value problem (the prime denotes the derivative with re- 

spect to r) 

w;"' -t_ 2r-‘(p,” - 3~9," + 3r+, - 3r++7, - i& (U -c) (cpl” + F‘$ - r-$) _t ioRvwcpl - iwHrwW~l = C, 

c&” + (2r" + 4ios) (D1"' + (- 3r‘Z + Giwr-1s $ Gins') @< + (3~~s + 4ios” - 2iwrmas + 2ioF-4’) @i + (- 3r-” + 

2ia.Y - 4iwr%’ -& 4ioF-as) cPI = 0 

F = Ho: cpl- + 2H;“(p1” - R;;“cp< + H&Q - iwR (u,,, - c) ‘pl’ - ioRH;’ (u, - c) ‘pl = 0 

‘px’-I- H&i- [Hi' + v’” (u, - c)-‘1 vpI = O 

F = ho: icwmCR-l (n” + 2h&I” - &,-“~i f h&+) = 

- aftlw - (z&y + 416%) @I” + (h;;” - 2ios' - 2i~ls}~~ + (--K3 - Ziws”+ 4~~‘s)~~ 

&)J&R_’ [c (VI” + k&J; -h&x) -+ u”cpt] = - @I” - @&f + Q@r -t 2~~lS~~ 

ccp,’ + v’cp, = c@i,‘, ‘p1 = @I, I” = a,: aI1 = 0, q’ = 0) u = v,” (r), v, = Y (H,), s = srz’ (r) 

We find the solutions of the equations for cp,(r) and m,(r) in the form of a series in 
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powers of 0, we obtain 

Translated by R.&S. 


