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STABILITY OF FLOW OF A VISCOUS INCOMPRESSIBLE FLUID
ALONG AN ELASTIC WALL'

M.P. MIASNIKOV

Stability relative to small long-wave disturbances of the flow of a heavy viscous
incompressible fluid interacting with a wall coated with a layer of incompressible
elastic material is considered.

1. Two stability problems for long-wave type disturbances are studied: (1) plane-parallel
flow of fluid draining along an inclined plane coated with a layer of elastic material; (2}
flow of fluid draining along the outer surface of a vertical tube with circular cross-section
coated with a layer of elastic material.

The motion of a viscous incompressible fluid is described by the Navier—Stokes equations
/1/ \

%+vjvjv*=g*——‘ ki ap‘—{-vAv Va¥=0

where * are the contravariant components of the velocity vector; p; density of fluid; p; pres-
sure in fluid; v kinematic viscosity of fluid; and g* contravariant components >f the free
fall acceleration vector. The system of equations of the motion of an elastic material has
the form /2,3/

Wk = g* + - M, VauF=0

K
—a:—" o+ uVyey; + Ekiv;'u + skiviukzei;'
=" (& V" + g V"), P = — pag* + 2nghagite,,
where u* are the contravariant components of the velocity vector of points in the elastic mat-
erial; p"’ contravariant components of the stress tensor; g,g contravariant components of
the deformation tensor; p, density of elastic material; p, pressure in elastic material; and
p shear modulus.
The boundary conditions are as follows:
(1) on the free surface of the fluid,

dF _ 8F .  oF

F(Il,l‘z,l;,t)=0, T=T*v azi =0
_ xj : oF aF
(—Pig” + 2mgtogPeap) 5= — P,

where —p is atmospheric pressure (p > 0);
(2) on the interface between the fluid and the elastic material,

. . P . F .
f(z1 T2, 73, 8) =0, (— p1g" + 291"5*“8’%«6)% = (— psg"’ + 2pg*egiBe,p) %‘ y W=V
i i

(3) fixed attachment condition between the elastic material and the solid wall,

P (xlv E2Y x:!) = Ov ui =0

All the equations and boundary conditions are described below for physical components of
the vectors and tensors in a dimensionless form. The physical components of the velocity
vector v; and ¥; in an arbitrary orthogonal curvilinear system are expressed in terms of the
contravariant components v\ and &' as follows /1/: v, = v'V gy, ui = u }/g“, where g;; are the
contravariant components of the metric tensor. We have /1/ g;, = p! Vi Ve Sap == tap V g%  gfR
for the physical components of the stress and deformation tensor; here, g" are the con'era\(ar—
iant components of the metric tensor. In passing to dimensionless variables, the characteristic
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length I, velocity ¥, and free fall acceleration g serve as the scale. The stress tensor
components are related to the guantity pV%, and time is measured in the scale f;= [V, The
following dimensionless parameters occur in the equations: R == Vyl/v the Reynolds number; F ==
V,*gly the Froude number; and m ==V, ¥ py/i, % = pi/py.
2. The drainage problem for a heavy viscous incompressible fluid flowing on an inclined
plane coated with a layer of elastic material has the statiocnary solution
Uy = My g (¥ — ho)® - g (Ho — o) (g — b}y 0,° =0
PCWs=p A1 (Ho— U 0 = 4" == 55,° == 0
5o (W =Gy — v +% (Hy — hy)lsin 0, Sy’ = e Ase 1
umtpy” {4} = wm’p 4 260k, — y +% (Hy — Bl cos 6 —
46% thy — y 4% (Hy — hy}P sin® @
G=YYm* Y, g=—=RF'sin8, r=Flgesh
Here ¥ 1 are the components of the velocity vector in the fluid; ° uw,” are the com-
ponents of the velocity vector in the elastic material; p° and p° pressure in the fluid
anpd in the elastic material, respectively; and sy, 8" sn° are the components of the deforma-
tion tensor in the elastic material. The 7 -axis of a rectangular Cartesian coordinate system
has the same direction as the motion of the fluid, while the @ -axis is directed towards tha
free surface of the fluid y==H, "The interface between the fluid and the elastic material
¥ = hy, and the angle of inclination of the plane to the horizen is 8.
T achiave compressed notation, we introduce a correspondence between the numerical and
literal indices: o
{z, y—si =xr y}

i2
To study the stability of steady-state motion relative to small disturbances, we set /4/
A A R N e N R i U
Py=py 4-api’, py==p," +ap
where <€ 1 and represent the disturbances in the form /4/

(o, ud, prds pofy o'l == {9 (0}, ©i (1) o (w) D) iy ¥ exp fo(z — at)]

In the case of long-wave type disturbances, we have o <1, Wa obtain the following boundayy-
value problem for the disturbances (the prime denotes the derivative with respect to y):

Py e PR (P~ €} @ - F@RVPy = 0
D, L Giws®,™ 4 Bias Dy = 0
¥ Hy (Vg =€) @" ~— ioR (vp, — )%, + i0Rrgy =0
(U — )"~ gy =0
¥ ==k feremPe 4 ioxm®e, = RO,
tcum®p,” = —RO," — 4iaRsd," — HolsD,
ey + 'y == e@,, gy = B,
=0 Qo 0, @ =0
ve=0" (g, Pme=v{Hg, 5= 557 ()
Terts on the order of w® have been omitted.
We will find solutions of the equations for the function @,(y) and @,(y) in the form of
expansion in series in powers of , obtaining

alg)=c1 4 o (g —ho) -+ cx {{y — ko o+ ima{weﬁ—jﬁ-—%q(m«—miﬁ%-”ﬂ"}}+c4{gy._sz¢>=+
iR [—c ot 4 g, — ) Hht g b i

D (1) = by + oy + by 4 & {7* — L0GlRgt % (Hy = ho)l 3* 8in 8 + Y, ily® sin 8}
The boundary conditions yield eight linear homogeneous equations for the coastanis 6.
by{m==1,2 3 4. Since the determinant of the system is egual %o zero, we sre led to the fol-
lowing eguation for ¢

6 (20m — €) — 2UORr (Ho — ho)® 4 Bi0R (00 — P (Hy—ho)t —
b s e
Gftoxm’qkoﬁ“ (Ho — ho) ¢==0
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In order to satisfy this equation we require ¢ =¢° 4 wc!, whence we find
o 1, 8 . )
EC=20,, == Tzﬁr (Ho — ho)® + I,;LR(HD — ho)Pv 3 e 2inmighe R (H o — Po) Uy

Suppose the equation of the free surface of the liquid in undisturbed motion has the
form y==H in dimensional magnitudes, while the interface between the fluid and the elastic
coating is at y=~h. We set l==H —h, Vo=V g(H — k), whence F=1, R=(H —h)Vg(H — kv,
m? == pyg (H — R)/p. The stability condition imposed on the mainstream flow will have the form

5 cos@ 15 h
% 2 1o pug
L 2 sin?@ 2 u

The elastic coating stabilizes the mainstream flow. In the case of a vertical plane
(8= n/2) the elastic coating creates a fluid flow stability region, whereas flow is unstable
in the case of a sclid wall. The more elastic the material of the coating the greater the
stability region. If hA=10 or p-» oo {no elastic coating), we obtain the stability condition

given in /5/.
3. The drainage problem for a heavy viscous incompressible fluid flowing on the outer
surface of a vertical tube coated with a layer of elastic material has the steady-state solu-

tion o
U0 (r) =Yy q(r® — he®) — YogHy? (in r — In ky)

pl=p, p=ul =0 = ut ==, =0

S (1) =G (r — ArY), 5.° (1) = — Y, G2 (r — ArY)2

wmip,” (r) = um®p 4 Y,G? [—6r% 4 2h,%

8h(1 4 Inr —Inky) — 22 (r 2 L ho™%]

g==RF 7 &=h® 4-u{H3 — he?), G ==Y, m*F?
Here 7, @, and z constitutes a cylindrical cooxdinate system whose z axis coincides with the
longitudinal axis of the tube; r, ¢ are polar coordinates in the cross-sectional plane; the out-
er surface of the solid wall of the tube is r =44 the interface between the elastic coating

and the fluid r==~h, and the free surface of the fluid re=Hy. The rest of +the notation
has the same meaning as above., To abbreviate the notation, we introduce a correspondence be-

tween the literal and numerical indices:
r,Q,z—i rez
123
To study the stability of steady-state motion relative to small disturbances, we set /4/
vy = 4oty wy=u o aut, sy st b oasgt
pr=p° +apl, p=py’ +ap’
where @ <€ 1, and represent the disturbances in the form /4/
{wd, uwd, pits Pty st = {9 (0, @: (), @s (), Dulr), Wy (N} exp [iw (z — et}
Setting o << 1, we obtain the boundary-value problem (the prime denotes the derivative with re-
spect to 7)
g1 27" — 3r3p) + 3r %) — 3rég, — R —c) (g + gy 1" %) + i0RYGy — ioRr e, =19
@, + (2rt -+ biws) Dy + (— 3r7% + Bior's 4 6ies’) Dy + (373 - &iws” — 2ier~s + 2ier i) @y 4 (— 37 4
2i0s™ — 4ior 2’ + Aior3s) Oy =0
re=Hy " + 2H3'0)" — Ho'pr' + He'py — 10R U — ) @1 — IORHG (Vm —¢) 1 =0
@ + Hi'oy — [Hy + 0" (vm—) 91 =0
r=hy: ionmicR (@ + 25 ey — ko ey -+ h'y) =
Dy — (2051 - 4lws) Dy -+ (hy? — Zies’ — 2dehgls) Dy + (—hy® — Zies” + Lioks"s) Oy
toxm3B [c (@1 + ho'ey’ —Ho?@r) -+ U'pr] = — By — Bg' Dy + by D A+ 2i0hsDy
gy LV =D, =D, r=eg®; =00,/ =0, v== v {r), v = {Hg)y s ==5."(n)

We find the solutions of the equations for ¢, {r) and ¢y (r) in the form of a series in
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powers of @, we obtain

i) =ar o {r’%*%% {sf&s‘t*-e}%

3&?& QH o — wgwqr?}} 4o [Y“W— - ioRqH I (tnr — iﬂﬁoﬂ +
& {r {Inr—Inhy)+ ‘%:L {»%wgr‘ 4 {12¢% —127% 4 15gH ¥ — Bgr¥){lar —In k\g)}}

Q) = br LB Y0t + oGt {Inr — In k)l 4+ B35 Ft wfoGri{nr —In k)l L 5r{lnr —Iahy)
Proceeding entirely analogougly to the analysis in Sect.2, we obtain the stability con~

dition in the form
Rng¥ (B) < 192%m%g (B)
7(P) = 128B® — 36p¢ — 144B7 -+ 52 - (96B* — 7208 -+ 28887 In p — 480 p* (B° — 1) 1P + 384p* In* B

2B =B — D —9) + 6P — 88 L DIny— 41— 1nf— 88 lnflny

Be=Hfhy > 1, y=afhy<<1
The resulting stability condition is valid if the radius of curvature of the cylindrical supr-
fame of the tube is of the order of the characteristic linear dimension of the problem.

If it is assumed that the radius of curvature of the tube cylindrical surface is of the
order of magnitude of the wavelength or greater, the order of the terms occuring in the egua-
tions and the boundary conditions of the problem change, which leads to a rearrangement of the
asymptotic series for the functions ¢ () and @, {}. A passage Lo the limit with & -~ o in the
resulting formula, therefore, is without meaning and yields the incorrect answer R =0. The
case in which the radius of curvature of the surface of the tube is of the order of magnitude
of the wavelangth may be studied using the method of Sect.2. If s=0, the fluid drains
along the surface of a solid elastic cylinder. To study the stability of such flow, it is
necessary to take into account longitudinal stretching of the elastic cylinder,

Suppose that the egquation of the free surface of the fluid in undisturbed motion has the
form r= H in dimensional variables, thes squation of the interface bestween the slastic coat-~
ing and the fluid has the form =<3, and the equation of the tube surface, r=g, We selact
ly==h, Vo=V gh. Then, § = Hih, y = aih, R == k¥ ghlv. It can be shown that

f=F Q= f D=M{1=0, f(1)=2304
=g =g N)=0 ") =160 -1 ~4lap>0

Consequently, if H—A<Ch({—> {},we will have /6/
L 44 i "
f(ﬁ)-_-_f_.,&l:gﬁx_@l(ﬁm 19, g(p)= 1%&&(;3“ 1y

where gy (B} >0 and oy (f)~ 0 a5 - 1, The stability vondition  assumingH - & <k ywill have
the form

18 t

R T e 98]

< m [ —4&lny—y3) g

The resulting formula shows that flow is always unstable if =g or as p-» o {no elastic
coating). The elastic voating creates a stability reserve for the mainstream flow, and the
smaller the gquantity g, i.e., the more elastic the material of the coating, the greater the
stability reserve.
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